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Energetic Formulations

What are you trying to do?

Predict composition and particle-size  dependent properties (e.g. burn rate) using 

ML, create ML tools to transition.

How is it done today?

Formulation property estimates via empirical formulas or hydrocode simulations.

What is your approach?

Curate data, augment with controlled experiments.  Create ML tools, provide in a 

modular, convenient package.

Who cares?

Reduce the number of experiments needed to optimize formulations; also suggest 

novel formulations.

What are the risks?

Data are noisy, sparse, scattered.

HEILMEIER Q&A
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Past 30+ years several have stated,“Exact prediction of the burning rate 

from the composition has not yet been achieved in a general way”

Burning rate is tailored for constraints:

• Thrust level

• Thrust duration

• Missile weight

• Critical impact velocity

• Processability

… the list goes on.

Burning rate is a number.  Let’s describe a formulation as a set of numbers.

Rate = 𝑓(𝒙)

Machine learning provides a route to 𝑓(𝒙) that has not yet been attempted.

PREDICTING PROPERTIES (BURNING RATE)
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Typical Solid Propellant 
Mixture

• Very heterogeneous 

burning surface

• Dimensions don’t allow 

direct combustion 

measurements

• Crystals are not round -

irregular shapes

~14% Binder (HTPB)

~16% Aluminum

~70% Oxidizer

   ~200-400 µm
Coarse oxidizer

Fine oxidizer ~1-20 mm (bacteria to talcum powder)

Aluminum ~ 20-50 mm

Medium oxidizer ~ 20-100 mm (white blood cell to hair)

Coarse oxidizer ~ 200-400 mm (fine to medium beach sand)
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Propellant Formulation

• New propellant development is costly
 Trial and error process to meet desired requirements

 Hard to predict based on previous formulations
 Multiple variables changed between each mix

 Systematic studies not often performed

 Don’t report intermediate mixes

 Few theoretical tools to aid initial design

 Sometimes call an “Art”
 Experienced formulators rely on intuition

 Capabilities often leave with employee

• We need to develop a tool set
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AP/HTPB Propellant Combustion

Complex AP Decomposition Process

• AP decomposes to perchloric acid and ammonia
 React exothermically together -> monopropellant behavior

 Premixed flamelets

• Excess oxidizer reacts with fuel products from HTPB pyrolysis
 Diffusion flamelets

• Oxidizer particle size distributions and quantity play significant role
 Testing a wide range or propellants may result in poor mechanical properties 

Solid Phase

Condensed Phase

Decomposed Gas Zone

Final Flame

AP

HTPB
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• Propellant models have been around for a long time
 3-Flame Structure over single AP  crystal from BDP 1970
 Evolved to sandwich or laminate model (Strahle et al. 

1972, Price et al. 1986, Hegab et al. 2000, and others) 
 Rocfire 3D simulation by Jackson et al. 2000, Particle 

Packing Knott et al. 2001 
 Gallier et al 2006 model for ignition of propellant pack
 Simulation of diffusion flame by Gross et al 2008-2015
 Lack the predictive aspect

Modeling Efforts

BDP 1970 Flame structure Gross 2008 Jackson et al. 2000 and Knott et al. 2001
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• Correlations based on empirical data to predict particle size effects in both open lit 
Summerfield 1961

 Host of others attempting to model the AP size dependence

• Others such as Miller et al. 1982, Atwood et al. 1999, Price et al. 2003 evaluated 
AP particle size dependence on propellants

• None have been used as a predictive tool in propellant formulization development  
burning rates or ballistics

• Models do not generalize and materials change
 Particle size distributions often not reported or with limited information

• ML collaboration by Abrukov et al. 2020 and Mariappan et al 2020 (AIAA 
propulsion and energy)

Correlation Efforts

Marrow thesis-TAMU 2018Summerfield et al.  1961 Fong and Smith 1987
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Machine Learning Effort

• Correlation important propellant properties

 Results on 20 propellants, 5 pressures (145 to 
1250 psi), single AP size, and multiple metals 
(Al, Ni, Zr)

 AP Size not correlated with burning rate

 Materials now well characterized

• Abrukov et al. AIAA P&E meeting 2020

• Russia/India Collaboration on ML
 Network with 3 layer: Scaling, Perception 

(neuron) and Unscaling

 Neurons- mathematical function the takes 
inputs and multiplies them by weighting 
function and adds the output

 11 inputs with 9 neurons at first layer

 9 input and 9 neurons at the second layer

 9 inputs and 1 neuron at third layer
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Garbage in,

Garbage out

Work is “data-driven”:

AI & ML models are 

trained on data.

DATA-DRIVEN EFFORT

New DoD experiments

Historical DoD data mining

Analysis of open data

Stories of three 

approaches to 

formulation data:
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Experimental Objectives

• Focus on reduced smoke compositions for formulation and 
testing

• Systematically study the chemical effects of binder molecular 
weight, curative, oxidizer particle size, concentration, and 
coarse to fine ratio on propellant burning rates
 Well characterized particle sizes

 Identify pressure dependency and temperature sensitivity for 
propellants
 Test pressures up to 8000 psi to capture slope break 

 Testing at NAWCWD-CL and NSWC-IHEODTD to eliminate 
manufacturing variability

 Develop relationship with burning rate and Pressure, 
Temperature, and Particle size/concentration as described by 
equations:

𝑝 = ቤ
 ln 𝑟

𝑇𝑖
𝑝
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Propellant Characterization

• Characterize large data set of materials  
for basic AP/HTPB composite propellants
 Identify potential AP grinding

 Increases in ballistic data

 Link Mechanical properties to ballistics

 Strength testing for stress and strain

 Viscosity of mixture 

 Compare facility testing from different 
locations
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Experimental Facility: NAWCWD-CL

• Burned at 1.7 to 10.3 MPa (250 to 1500 psi) (LPWB)

• Burned at 10.3 to 55 MPa (1500 to 8000 psi) (HPWB)
 Nitrogen used as pressurizing gas
 Visual burning rate measurement

• Photron Fastcam SA1.1
 700 frames per second
 K2 lens system with CF2 objective

• Nichrome wire Ignition .3 mm (.012 in.)
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INDIAN HEAD EXPERIMENTAL EFFORT – Mini Slab 

 Standard Slab: 1” x 2.6” x 6” 

 ~1 lbs, up to 10kpsi (69 MPa)

 Mini Slab: 0.75” x 1.75” x 2.5” 

 ~100 grams, up to 5kpsi (34 MPa)

 Unlike strands, a single firing can provide 

burning rate data over a range of pressures

 Temperature conditioning allows for determination of 

temperature sensitivity

 Data collected: chamber pressure, thrust

 Data deduced: burning rate, specific impulse, c*, 

temperature sensitivity

 Slab motor has been used regularly for ~30 years on 

all types of propellants  lots of data to mine 



Distribution Statement A: Approved for public release; distribution is unlimited.

UNCLASSIFIED // FOR OFFICAL USE ONLY // Distribution D

16

Garbage in,

Garbage out

Work is “data-driven”:

AI & ML models are 

trained on data.

DATA-DRIVEN EFFORT

New DoD experiments

Historical DoD data mining

Analysis of open data

Stories of three 

approaches to 

formulation data:
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Start with Vielle’s Law:

Make prefactor and exponent dependent on 

particle diameter D and solids concentration C

MODERN EMPIRICAL CORRELATION

Correlating the Effects of AP Particle Size and 

Concentration on AP/HTPB Composite Propellant 

Burning Rates, Gordon R. Morrow, Master’s Thesis, 

2017.  Prof. Eric L. Peterson, TAMU.

Empirical, physics-inspired model fits 

the training data, but fails outside of 

trained particle size data.

Let’s try something else with the data…
Above: training results with R2 0.968, RMSE 0.054 in/s

NOT SHOWN: test results with R2 0.818, RMSE 0.477 in/s

Training results
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Shuffle all 8 datasets together and partition to train/test.

Morrow’s model performance is shown below.

Note large number of samples near 0.1-0.3 in/s.

Training Results Test Results



Distribution Statement A: Approved for public release; distribution is unlimited.

UNCLASSIFIED // FOR OFFICAL USE ONLY // Distribution D

19

Training Results Test Results

Use non-linear least squares to re-optimize Morrow parameters.

Results improve, but model has significant errors.
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A neural network beats Morrow’s correlation by any metric.

Machine learning can improve formulation property predictions.

Training Results Test Results
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Summary

• Explored the literature to curate large data set

 A lot of unknowns in open literature (polymer chain length, 
cure ratio, AP size distribution)

 Need well characterized inputs for model

• Work to collect burning rate data over wide pressure 
range with a connection to mechanical properties in 
progress. 

 Searching all available data sources

 Open to collect propellant data from those willing to share

 Reach out to anyone on the team

• Each method has advantages and disadvantages

 Determine what you want from your data
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Questions?


